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Introduction

We present the work achieved in [2], where we develop a Hybrid High-Order (HHO) method for a generalized
Navier-Stokes problem adapted not only to non-Newtonian fluids, but also fluids with non-classical convective
behaviour. It is a generalization of the HHO methods implemented for the generalized Stokes problem in [1]
and the Navier-Stokes problem in [6], based on the works of [3, 4] and [5]. The space discretization hinges
on local reconstruction operators from hybrid polynomial unknowns at the elements and faces.

The HHO method has several assets:
 handles general polyhedral meshes with seamless treatment of nonconforming mesh refinement;

 dimension-independent implementation;

« arbitrary order (better accuracy for a fixed mesh or fewer elements for a given precision);
« offers stability for inf-sup condition;

« faithfully reproduces non-Newtonian behaviours.

We show a convergence to minimal regularity solutions, and a detailed error estimate in Sobolev-like norms,
under some assumptions on the viscosity and convective laws. For the sake of simplicity, we will focus on a
Carreau-Yasuda viscosity law and a power-like convective law since they verify the assumptions required to
obtain the convergence and error estimate. Finally, we show an application to the lid-driven cavity problem
which is a very classical test that, despite incompatible boundary conditions, demonstrates the performance
of the method in situations closer to real-life problems.

Generalized Navier-Stokes Problem

Let Q c R%, d € {2, 3}, denote a bounded, connected, polyhedral open set with Lipschitz boundary dQ. We
consider the incompressible flow of a fluid occupying Q and subjected to a volumetric force field f : Q — R¢,
governed by the following generalized Navier—Stokes problem: Find the velocity field u : Q@ — R¢ and the
pressure field p : £ — R such that

(—Vo(Vau)+(u-V)xy(u)+Vp =f inQ,
Vu=0 1inQ,
u =0 onoQ,
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where the viscosity law o : R9%4 — R9*d gnd the convective law v : R — R¥ are defined such that
y S S X

o(1) = k(3 + [Tzt VT eRCY and  x(w) =viw|"w Vw e R,

with k, v € (0, ), 6 € [0, 00), and where the viscous index r € (1, o) allows us to consider non-Newtonian
fluids, while the convective index s € (1, o0) generalizes the classical convective term (with s = 2) to power-
like convective behaviours.

The Hybrid High-Order Method

Discrete spaces and norms

For a mesh 7j, of size h € H c (0, 00) and a polynomial degree k > 1, we define the discrete global space
Qi = {Kh = ((v?)res;, WVF)res,) : VT € PX(T)¢ VT € 7, and vy € PX(F)? VF € ?}Z}

Forall T € 75, we denote by Ux. the restriction U% to T, and, for ally, € Uy, weletv, := (vr, (VF)res) € Us,
and (v,);, = vr. The discrete spaces containing the velocity and pressure unknowns are respectively

U,o=1{v,€U, : ve=0 VFeF} and P, = {qh e LI(Q) : (qn), €PXNT) VT e 77,} .

We endow P’Z with the norm ||-]|,~ gy, and QZO with the norm ||-||¢.-.» defined such that
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Discrete operators

For all T € 7y, we denote Iy : WH(Q)Y 5 v i (nhv, (xkv)res;) € U% the interpolation operator and we
define the local gradient reconstruction G : U% — P*(T)9%¢ such that

/G;KT T = /VVT T+ Z /(VF — VT) y (TnTF) V1 € Pk(T)dXd.
T T Fegr v F

We also define the local symmetric gradient reconstruction G~ . : UX — PX(T, R%*?) and local divergence
reconstruction DX : U% — P*(T) such that

Gf,T = (GX). and D =tr(G).
Finally, we define the global version of these operators such that for all T € 7},

k . k k . k k . k k .1k
(G = Grye, (G = Gorvy, (Dpv)y = Dpye,  (Lyy), =Ly,

Discrete Problem

The discrete weak formulation reads: Find (u,, ps) € U} , % Pk such that

ah(lha Kh) + bh(Kh, ph) + Ch(lha Kh) — /g;f ) Vh th < Q]]/Cl,()a

~bu(u,,qrn) =0 Vqn € Py,

where,

cap(w,,v,) = /QO-(Gf,hmh) : Gf,hgh +s(w,,v,) with s, a stabilization function,

*bn(v,, qn) = —/D]ZK;, dh;
Q

s—=2 [vy-wy
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ccp(w,,v,) = —/(X(Wh)‘Gl;l)mh‘Vh—_,/(X(Wh)’GI;,)Kh‘Wh‘F— > (X(Wh)’Glg)Kh’Wlp
s Jo s Jo s Ja |wil

Theorem (Well-posedness). There exists a solution to the above discrete problem. Moreover, assuming
2 < s < % where 7 := min(2, r), and a data smallness condition (cf. [2]), the solution is unique.

Main Results

Theorem (Convergence to minimal regularity solutions). Let ((u,,ps))hery be a sequence of
(Qi 0 X Pﬁ)heﬂ such that, for all h € H, (u,, p1) solves the discrete weak formulation. Assume

*

r
S < —.
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Then, there exists (u, p) € Wé’r(Q)d X Lg'(Q) solving the weak formulation such that up to a subsequence,

“ Uy, _h__o_) u strongly in L[l,r*)(Q)d; *Dp —h—o—> p strongly in Lr,(Q);

. Gslihgh — V.u strongly in L"(Q)%*¢; *sp(u,,u,) — 0.

Moreover, if the solution is unique, the convergences extend to the whole sequence.

Theorem (Error estimate). Let (u,p) e UX P and (u,, py) €U 2,0 X P’,; solve the weak and discrete weak

formulations, respectively. Assume the uniqueness of such solutions, and u € W 27 (7;,)4 n Wk+bLsr'(q,)d.
p e WH(Q) n WKL (T, o (Vu) € W (Q)3xd 0 wh+Lr'(7)4%d | a5 well as

k
a
r<2<s<—,
r/

and a data smallness condition depending only on f, o-, and x (cf. [2]). Then,

lu, — Fulle,n < R*D" D min (g, 127N + BN,

lpy — ﬂgp”Lr,(Q) < pk+D=DAg o RO (r=1)% e (Zh, 1)(2—r)(r—1)N4,

where ¢ = h*"! maxzcq (|T|_%|H|Wk+2,r(T)d)5_1, with Vi, ..., N4 > 0 depending only on u, p, x, and 0.

Lid-driven Cavity Application

The domain is the unit square Q = (0, 1)?, and we enforce a unit tangential velocity # = (1,0) on the top
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edge and wall boundary conditions on the other edges. We consider 4 = # with a moderate Reynolds

number Re = 1000, 6 = 1, and v = 1. We show the velocity magnitude contours ranging from 0 (blue) to 1
(red). First, we set the convective index s = 2 and we vary the viscosity index r:

r=72 r=3

(\O] [O%)

y =

Now, we set the viscosity index r = % and we vary the convective index s:
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We observe significant differences in the behaviour of the flow according to the viscous exponent r and
the convective exponent s, coherent with the expected physical behaviour. In particular, the viscous effects
increase with r, and the turbulent effects increase with s.
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