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Introduction
We present the work achieved in [2], where we develop a Hybrid High-Order (HHO) method for a generalized
Navier-Stokes problem adapted not only to non-Newtonian fluids, but also fluids with non-classical convective
behaviour. It is a generalization of the HHO methods implemented for the generalized Stokes problem in [1]
and the Navier-Stokes problem in [6], based on the works of [3, 4] and [5]. The space discretization hinges
on local reconstruction operators from hybrid polynomial unknowns at the elements and faces.

The HHO method has several assets:
• handles general polyhedral meshes with seamless treatment of nonconforming mesh refinement;

• dimension-independent implementation;
• arbitrary order (better accuracy for a fixed mesh or fewer elements for a given precision);
• offers stability for inf-sup condition;
• faithfully reproduces non-Newtonian behaviours.

We show a convergence to minimal regularity solutions, and a detailed error estimate in Sobolev-like norms,
under some assumptions on the viscosity and convective laws. For the sake of simplicity, we will focus on a
Carreau-Yasuda viscosity law and a power-like convective law since they verify the assumptions required to
obtain the convergence and error estimate. Finally, we show an application to the lid-driven cavity problem
which is a very classical test that, despite incompatible boundary conditions, demonstrates the performance
of the method in situations closer to real-life problems.

Generalized Navier–Stokes Problem

Let Ω ⊂ R3, 3 ∈ {2, 3}, denote a bounded, connected, polyhedral open set with Lipschitz boundary mΩ. We
consider the incompressible flow of a fluid occupyingΩ and subjected to a volumetric force field f : Ω→ R3,
governed by the following generalized Navier–Stokes problem: Find the velocity field u : Ω → R3 and the
pressure field ? : Ω→ R such that

−∇·2(∇su) + (u · ∇)6(u) + ∇? = f in Ω,
∇·u = 0 in Ω,

u = 0 on mΩ,∫
Ω
? = 0,

where the viscosity law 2 : R3×3s → R3×3s and the convective law 6 : R3 → R3 are defined such that

2(3) = ^(X + |3 |)A−2
3×33 ∀3 ∈ R3×3s and 6(w) = a |w |B−2w ∀w ∈ R3,

with ^, a ∈ (0,∞), X ∈ [0,∞), and where the viscous index A ∈ (1,∞) allows us to consider non-Newtonian
fluids, while the convective index B ∈ (1,∞) generalizes the classical convective term (with B = 2) to power-
like convective behaviours.

The Hybrid High-Order Method

Discrete spaces and norms

For a mesh Tℎ of size ℎ ∈ H ⊂ (0,∞) and a polynomial degree : ≥ 1, we define the discrete global space
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Discrete operators

For all ) ∈ Tℎ, we denote O:
)
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)
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define the local gradient reconstruction G:
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We also define the local symmetric gradient reconstruction G:
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→ P: (),R3×3s ) and local divergence
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Finally, we define the global version of these operators such that for all ) ∈ Tℎ,
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Discrete Problem

The discrete weak formulation reads: Find (u
ℎ
, ?ℎ) ∈ [:

ℎ,0 × %:ℎ such that
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∫
Ω

f · vℎ ∀v
ℎ
∈ [:

ℎ,0,

−bℎ(uℎ, @ℎ) = 0 ∀@ℎ ∈ %:ℎ,

where,
• aℎ(wℎ

, v
ℎ
) ≔

∫
Ω

2(G:
s,ℎwℎ

) : G:
s,ℎvℎ + sℎ(wℎ

, v
ℎ
) with sℎ a stabilization function,

• bℎ(vℎ, @ℎ) B −
∫
Ω

D:
ℎvℎ @ℎ,

• cℎ(wℎ
, v
ℎ
) ≔ 1

B

∫
Ω

(6(wℎ) ·G:
ℎ)wℎ

· vℎ −
1
B′

∫
Ω

(6(wℎ) ·G:
ℎ)vℎ ·wℎ +

B−2
B

∫
Ω

vℎ ·wℎ

|wℎ |2
(6(wℎ) ·G:

ℎ)wℎ
·wℎ.

Theorem (Well-posedness). There exists a solution to the above discrete problem. Moreover, assuming
2 ≤ B ≤ Ã∗

Ã′ where Ã ≔ min(2, A), and a data smallness condition (cf. [2]), the solution is unique.

Main Results
Theorem (Convergence to minimal regularity solutions). Let ((u

ℎ
, ?ℎ))ℎ∈H be a sequence of
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Then, there exists (u, ?) ∈ ]1,A
0 (Ω)

3 × !A′0 (Ω) solving the weak formulation such that up to a subsequence,
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0.

Moreover, if the solution is unique, the convergences extend to the whole sequence.

Theorem (Error estimate). Let (u, ?) ∈ [ × % and (u
ℎ
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and a data smallness condition depending only on 5 , 2, and 6 (cf. [2]). Then,
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X−1, with N1, ...,N4 ≥ 0 depending only on D, ?, 6, and 2.

Lid-driven Cavity Application

The domain is the unit square Ω = (0, 1)2, and we enforce a unit tangential velocity u = (1, 0) on the top
edge and wall boundary conditions on the other edges. We consider ` = 2

Re with a moderate Reynolds
number Re = 1000, X = 1, and a = 1. We show the velocity magnitude contours ranging from 0 (blue) to 1
(red). First, we set the convective index B = 2 and we vary the viscosity index A:

A = 3
2 A = 2 A = 3

Now, we set the viscosity index A = 5
2 and we vary the convective index B:

B = 3
2 B = 2 B = 9

2

We observe significant differences in the behaviour of the flow according to the viscous exponent A and
the convective exponent B, coherent with the expected physical behaviour. In particular, the viscous effects
increase with A, and the turbulent effects increase with B.
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